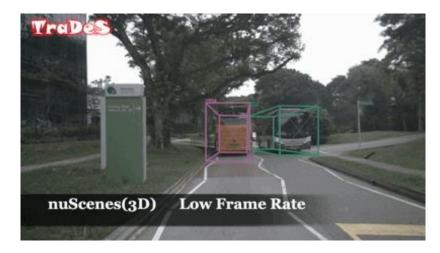
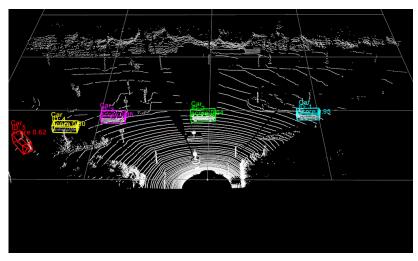

# Multi-Object Tracking

Han Wu

We plan to focus on attacking **3D Multi-Object Tracking** (MOT) models for **Vision-Based** vehicle tracking in real time, without using 3D Lidar Data.


Single Object Tracking vs Multi-Object Tracking




Single Object trackingMulti Object trackingSingle Object Tracking (SOT) and Multi-Object Tracking (MOT) <sup>[1]</sup>

- Adversarial Attacks
  - 2D SOT (SiamRPN++) x n
  - 2D MOT (FairMOT E2E) x 1
  - **3D Lidar** (Point Cloud) x n
  - 3D MOT (vision-only) × 0

## 2D Tracking vs 3D Tracking



### Monocular Tracker: vision-only [2]



#### Multi-Modality Tracker: 3D Lidar

[1] Soleimanitaleb, Zahra, and Mohammad Ali Keyvanrad. "Single Object Tracking: A Survey of Methods, Datasets, and Evaluation Metrics." *arXiv preprint arXiv:2201.13066* (2022). [2] Wu, Jialian, et al. "Track to detect and segment: An online multi-object tracker." *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition.* 2021. Traditional Methods (Low-level Features and Statistical Learning)

- The Joint Data Association Filter
- Multi Hypothesis Tracking
- Random Finite Sets

#### **Deep Learning**

- Tracking by Detection (TBD): Modular Framework
- Joint Detection and Tracking (JDT): End-to-End
- Transformer-based Models

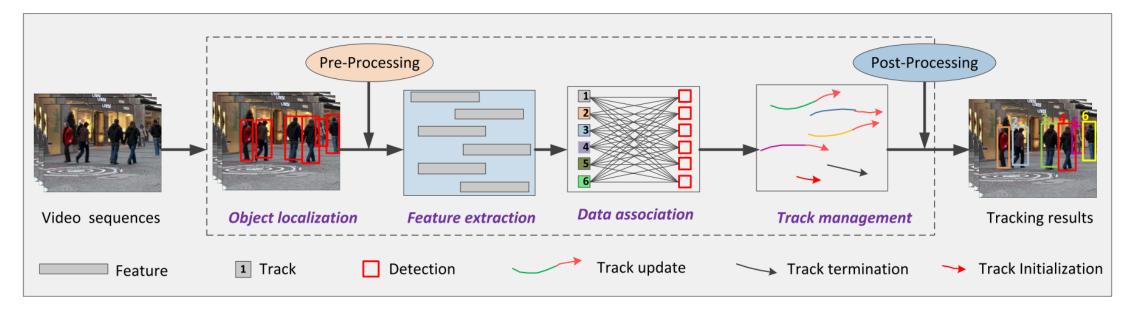



Fig. 3. The main procedures of TBD framework, which consists of four core components and two processing techniques. The four core components contain pedestrian localisation, feature extraction, data association and track management. Processing techniques contain pre-processing and post-processing techniques.

## Dataset

- KITTI
- MOT Challenge
- nuScenes

## Evaluation Metrics

| Year and Author      | Tracker    | MOTA(↑) | <b>MOTP</b> (↑) | $IDF1(\uparrow)$ | $MT(\uparrow)$ | $ML(\downarrow)$ | FP(↓  | $FN(\downarrow)$ | <b>IDS</b> $(\downarrow)$ | $Frag(\downarrow)$ | $Hz(\uparrow)$ |
|----------------------|------------|---------|-----------------|------------------|----------------|------------------|-------|------------------|---------------------------|--------------------|----------------|
| 2019 Feng et al.     | SAC [50]   | 54.7    | 75.9            | 62.3             | 20.4           | 40.1             | 26091 | 228434           | 1243                      | 3726               | 1.5            |
| 2019 Bergmann et al. | TWBW [100] | 53.5    | 78.0            | 52.3             | 19.5           | 36.6             | 12201 | 248047           | 2072                      | 4611               | 1.5            |
| 2019 Henschel et al. | BJD [28]   | 52.6    | 77.1            | 50.8             | 19.7           | 35.8             | 31572 | 232659           | 3050                      | 3792               | 5.4            |
| 2019 Chu et al.      | FAMA [49]  | 52.0    | 76.5            | 48.7             | 19.1           | 33.4             | 14138 | 253616           | 3072                      | 5318               | 0.0            |
| 2019 Wang et al.     | ETC [105]  | 51.9    | 76.3            | 58.1             | 23.1           | 35.5             | 36164 | 232783           | 2288                      | 3071               | 0.7            |
| 2019 Sheng et al.    | HAGF [135] | 51.8    | 77.0            | 54.7             | 23.4           | 37.9             | 33212 | 236772           | 1834                      | 2739               | 0.7            |
| 2018 Shen et al.     | AFN [32]   | 51.5    | 77.6            | 46.9             | 20.6           | 35.5             | 22391 | 248420           | 2593                      | 4308               | 1.8            |
| 2018 Henschel et al. | FHFB [136] | 51.3    | 77              | 47.6             | 21.4           | 5.2              | 24101 | 247921           | 2648                      | 4279               | 0.2            |
| 2019 Chen et al.     | ATA [130]  | 51.3    | 76.7            | 54.5             | 17.1           | 35.4             | 20148 | 252531           | 2285                      | 5798               | 17.8           |
| 2018 Keuper et al.   | MSA [83]   | 51.2    | 75.9            | 54.5             | 20.9           | 37.0             | 25937 | 247822           | 1802                      | 2984               | 1.8            |
| 2019 Xu et al.       | STRN [103] | 50.9    | 75.6            | 56.0             | 18.9           | 33.8             | 25295 | 249365           | 2397                      | 9363               | 13.8           |
| 2018 Long et al.     | MOTDT [56] | 50.9    | 76.6            | 52.7             | 17.5           | 35.7             | 24069 | 250768           | 2474                      | 5317               | 18.3           |
| 2018 Sheng et al.    | IMHT [113] | 50.6    | 77.6            | 56.5             | 17.6           | 43.4             | 22213 | 255030           | 1407                      | 2079               | 2.6            |
| 2019 Yoon et al.     | DTAMA [8]  | 50.3    | 76.7            | 53.5             | 19.2           | 37.5             | 25479 | 25296            | 2192                      | 3978               | 1.5            |
| 2017 Chen et al.     | EDM [137]  | 50.0    | 77.3            | 51.3             | 21.6           | 36.3             | 32279 | 247297           | 2264                      | 3260               | 0.6            |