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Abstract

We plan to generate adversarial patches against object
detection models in a simulated environment by changing
the material or texture of an object, which is a special kind
of physical patch.

1. Introduction

Adding a small and intentional drift to the input distribu-
tion, also known as adversarial perturbations, can substan-
tially decrease the deep neural network’s performance. Ad-
versaries can exploit optimization methods, sensitive fea-
tures, geometric transformations, and generative models to
generate adversarial examples [15].

In 2017, Brown et al. brought adversarial examples to
the physical world by printing human-noticeable patches on
stickers [ ], posing threats against real-world applications.
Then, research interests gradually shifted from digital at-
tacks (modifying image pixel values) to physical attacks.

Adversarial examples in the physical world must be able
to be captured by sensors, such as cameras. As a result,
physical attacks require a substantial intensity of pertur-
bations, making them visually perceptible by human eyes.
Among physical attacks, adversarial patches [1] are the
most widely studied methods. In a survey on visually ad-
versarial attacks, Wei et al. categorized adversarial patches
into meaningful patches (e.g., QR Code) and meaningless
patches that do not correspond to real-world objects [23].

Though most physical attacks are visually perceptible by
human eyes, some optical attacks can only be captured by
sensors (e.g., rolling shutter attacks). In [8], Li et al. sum-
marized optical adversarial attacks, including attacks that
use high-frequency light, laser, and projector.

Our research will focus on adversarial patches that are
noticeable by human eyes. In [16], Sharma et al. surveyed
adversarial patch attacks in vision-based tasks that involve
three mainstream models: classification, detection, and re-
identification [22], and we will focus on adversarial attacks
against object detection models.

2. Digital Patch

Digital patches generate adversarial examples by directly
modifying image pixel values. Some digital patches can be
applied to the physical world by adding extra constraints
during the optimization. For example, Lee et al. extended
digital DPatch [9] to the physical world [7].

However, some research generates asteroid and grid-
shaped patches [24] or small patches [6] to reduce the num-
ber of perturbed pixels, making it infeasible to be printed
out on physical objects.

Besides, the effectiveness of adversarial patches should
be position invariant. Digital patches can fool detection
models without overlapping with objects [14].

3. Physical Patch

Physical patches pose a great threat against autonomous
driving vehicles as they are invariant to input images and
thus can inherently achieve real-time attacks [ 8].

Prior research generates stop signs that cannot be recog-
nized by detection models [17] [2], and adversarial posters
to vanish pedestrian [19] [21]. Chindaudom et al. produce
meaningful patches by combining patches and QR Codes
[3] [4]. Though most patches are static, Hoory et al. gener-
ate and display dynamic patches on a monitor attached to a
vehicle [5]. However, physical patches can only attack ob-
ject detection models when the camera is close enough (see
the demo video [20] [10]). Besides, testing physical patches
could waste a lot of printing materials.

For autonomous driving, it is more popular to test safety-
critical edge cases in simulation. Testing physical attacks
in simulators is more efficient than in the physical world
since we can easily vary weather and lighting conditions. In
simulators, adversarial patches can be applied by changing
the material or texture of an object, but prior research only
applies patches by modifying pixel values [11] [12] [13].

4. Summary

In summary, most prior research tests physical attacks in
the real world or applies adversarial patches by modifying
pixel values in simulators.
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https://www.youtube.com/watch?v=gps37SqC7dU
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